
s a system integrator,
MTS-PowerTek develops

custom data-acquisition and
control systems, many of which

use VXIbus instruments. For the
past three years, we’ve built sys-
tems that use a Unix-based, embed-
ded VXIbus controller to control
data-acquisition instruments. Our
systems also use Windows NT-based
PCs to provide the user interface.
These PCs communicate to the Unix
controller through an Ethernet port.
This year, we investigated how we
could build systems in which the
Windows NT-based computer con-
trols the VXIbus instruments and
operates as the user interface.

We were intrigued by the idea of
using VXIplug&play-compliant
software to build these NT-based
systems. We found that VXIplug&
play’s soft front panels, instrument
drivers, driver source code, and help
files can save us hundreds of hours
over developing systems using
Unix. Using VXIplug&play-compli-
ant instruments reduces the
time, and hence the cost, of
integrating new systems.

We also wanted to move to
a single operating system be-
cause we deliver systems that
use any of several communi-
cations buses between the
user-interface PC and a VXI-
bus Slot-0 controller. Those
buses include MXIbus, IEEE
488, and Grand Interconnect,
a fiber-optic link from Kinet-
icSystems (Lockport, IL).
VXIplug&play instrument
drivers let us develop sys-
tems with any system con-
troller while using the same

applications software. We can’t do
that with Unix.

Get It Working
When integrating a system, we
start by verifying that each instru-
ment works on its own. Before the
advent of VXIplug&play software,
I’d write a sample program to verify
that each module worked. I had to
write a sample program for each
new module type that I received.

To write the program, I’d find
some sample code in the manufac-
turer’s manual, type it into my pro-
gram, compile it, and run it. Often,

the code didn’t work correctly the
first time, and I would have to elim-
inate potential problems such as a
bad VXIbus module, a typing error
in the code, an incorrect sample pro-
gram, a wrong address, or the
wrong driver software.

Using a VXIplug&play soft front
panel eliminates the need to write
test code. Soft front panels let users
test and exercise a module right
after plugging it into the VXI-
bus mainframe. Even if VXIplug&
play standards specified soft-front
panels and nothing else, I’d still con-
sider moving from Unix to Windows.

Figure 1 shows a soft front panel
for a Hewlett-Packard E1413 scan-
ning 64-channel analog-to-digital
converter (ADC). This soft front
panel lets a user select the signal-
conditioning plug-on (SCP) and con-
figure each of the SCP’s eight chan-
nels. Here, the soft front panel lets
the user select the type of input (re-
sistance is selected in the figure)
and set parameters such as excita-

tion current and voltage
range.

Soft front panels offer a
less obvious benefit, too. We
perform a signal checkout
after assembling each sys-
tem. Electricians from our
electrical shop perform this
check to verify that they’ve
correctly wired the system.
I’ve found that electrical
folks often don’t trust soft-
ware; they usually blame the
software when a system
doesn’t work. Because soft
front panels work, we can
eliminate the software as an
error source. If an external

VXIBUS-BASED TEST

Soft front panels
and drivers let you use

the same software
on many VXIbus systems.

Jim Ware
MTS-PowerTek, Farmington Hills, MI

A

VXIplug&play Cuts System
Integration Time

v

©

Soft front panels let you operate a VXIbus instrument
without writing any code. This panel controls the engineering
units for an HP E1413 ADC module.

FIGURE 1.

&TEST MEASUREMENTTEST MEASUREMENT
W O R L D TM

THE MAGAZINE FOR QUALITY IN ELECTRONICS

signal doesn’t check out with the
soft front panel, we usually find a
wiring problem.

I recently spent about 160 hours
writing application code that lets
customers perform basic mainte-
nance and troubleshooting on our
Unix-based VXIbus system. The
maintenance included off-line func-
tions that exercise a module to check
external wiring, run module diag-
nostics, run self-tests, and perform
calibration. Run-time functions let
users view log files, check disk
space, and check memory and
process status.

If we were running a system
with VXIplug&play-compliant
products, we would not have had
to write the diagnostic software.
Instead, we could have used the
soft front panels supplied with
the VXIbus modules. Soft front
panels are diagnostic tools only,
though. They can’t share data
with other applications, and they
often don’t provide access to all
of a module’s features.

Driver Specifications
In addition to requiring that
manufacturers supply soft front
panels, the VXIplug&play Sys-
tems Alliance has specifications
for instrument drivers. The
VXIplug&play instrument dri-
vers and a DLL called virtual
instrument software architec-
ture (VISA) let you use any pro-
gramming language, regardless
of which lower-level I/O driver
you use—National Instru-
ments’ NI-VXI or Hewlett-
Packard’s standard instrument
control language (SICL).

VISA is part of a software hierar-
chy that resides between instrument
drivers and I/O driver libraries (Fig.

2). In effect, VISA translates com-
mands from instrument drivers into
the function calls that the I/O driver
libraries require. VISA comes in the
form of a Windows DLL and is sup-
plied with any VXIplug&play instru-
ment module. When working with
VXIplug&play drivers and VISA,
you can use the same applications
code regardless of which communica-
tions bus connects the host PC and
the Slot-0 controller.

Sitting above VISA in the soft-
ware hierarchy is the VXIplug&
play instrument-driver for a partic-
ular module. The instrument driver
contains a library of function calls
that control all of an instrument’s
features. VXIbus module manufac-
turers deliver their instrument dri-
vers in DLL form.

Some instrument drivers also
have programming shells that re-
side around the VXIplug&play dri-
ver DLLs. These shells let you pro-
gram an instrument driver using a
programming language such as Lab-

View, LabWindows/CVI, or VEE.
At MTS-PowerTek, we often write
our own driver shells using C, C++,
or Basic. Application programs,
which are at the top of the hierar-
chy, make calls to the shells, which
call the VXIplug&play instrument
drivers, which make calls to VISA,
and so on.

Having the VXIplug&play instru-
ment driver as a DLL has both an
advantage and a disadvantage over
using instruments that do not com-
ply with VXIplug&play. The advan-
tage is that if the instrument manu-

facturer fixes a bug in the driver,
you or your customer (if you’re a
system integrator) can usually get
the new DLL from the company’s
Web site and install it. You can fix
the bug without having to recompile
any code.

The disadvantage is that it’s pos-
sible for the system you use for de-
velopment and testing to have a ver-
sion of the DLL that differs from
the version on your customer’s ma-
chine, and this can complicate trou-
bleshooting. You can resolve the
problem by statically linking to the

library, which will combine the
applications program and the
driver into one program.

Static linking ensures that a
system integrator and user
have the same instrument dri-
ver and VISA DLL. If you need
to upgrade the user’s driver,
however, you’ll have to recom-
pile the entire application.

The VXIplug&play Systems
Alliance may revise VISA from
time to time. So if you use dy-
namic linking, you can just in-
stall a new version of an instru-
ment driver or VISA. You don’t
have to recompile your applica-
tions software to upgrade to a
new DLL.

Use the Latest DLL
Whenever you develop a new
system, be sure to use the latest
version of driver DLLs and
VISA DLLs.1 When I started
exploring the capabilities of
VXIplug&play by getting an
IEEE 488 Slot-0 controller and
VXIplug&play software for
several of my modules, I was un-

able to get one manufacturer’s soft
front panel to control its module. I
downloaded the new version of the
VISA DLL from the company’s Web
site, and then the soft front panel
recognized all of my modules.

In contrast to using VXI-
plug&play-compliant software, we
often develop our own software
shells when using Unix. For Unix
systems, we use a RadiSys Slot-0
controller supplied by Hewlett-
Packard. HP ships C-SCPI instru-
ment drivers with each controller.
Our driver shells can make calls to

VXIBUS-BASED TESTv

©

In
str

um
en

t D
riv

er

Applications Program

Instrument Driver Programming Interface
Text: C, C++, Basic

Graphical: LabView or VEE Diagram

VXIplug&play Instrument Driver Library.DLL

VISA.DLL

Low-Level I/O Drivers (NI-VXI, SICL)

Instruments

Instrument drivers take commands from
applications programs, and VISA converts function calls
from instrument drivers into commands that low-level
I/O drivers can understand.

FIGURE 2.

the drivers using the high-level C-
SCPI language. For example, to set
up a type J thermocouple channel on
an HP E1413 ADC module, we send
the following C-SCPI command to
the instrument driver:

sense:function:temperature
TC,J,0.0625,(@156)
Unfortunately, we run into prob-

lems when we need to develop an in-
terface for VXIbus modules from
manufacturers other than HP. Un-
less the module uses message-based
programming commands, we need
to develop a shell that communi-
cates directly to HP’s SICL drivers.
Working at this lower level (see Fig.
2), we can no longer write instru-
ment commands using the C-SCPI
language, so writing to the SICL
driver is more complex than writing
a message-based command.

With Windows NT and VXI-
plug&play-compliant instruments,
we can always write code at a level
similar to C-SCPI. This standard
way of making calls to instruments
is what makes VXIplug&play so ap-
pealing. All card interfaces that we

develop can use high-level function
calls. An example VXIplug&play
call to a KineticSystems V207 ADC
module for reading a buffer of data
looks like this:

retcode = ksv207_read
(vi_handle, &dataArray);

where vi_handle identifies the VXI-
bus instrument and dataArray re-
turns an array of data from the in-
strument to the program.

VXIplug&play standards define
programming frameworks for Win-
dows 3.1, Windows 95, Windows NT,
HP-UX, and SunOS. Although some
companies offer VXIplug&play dri-
vers for SunOS and HP-UX frame-
works, most don’t. Therefore, if you
want to take advantage of VXI-
plug&play, you must use one of the
Windows frameworks.

We wanted to use the same frame-
work regardless of which communi-
cations bus we used. We didn’t want
to recompile the applications code
for each interface. Using Unix, we’d
have to do that. If I wanted to use a
VXIbus module that didn’t have an
HP-UX or SunOS VXIplug&play

driver, I’d have to develop a regis-
ter-based driver and rewrite it for
each communications bus.

Using VXIplug&play instrument
drivers and VISA, we now write
applications in many languages and
operate them through any commu-
nications bus. For example, if we de-
velop a Windows NT application for
the KineticSystems V207 module
using an MXIbus connection from
the PC to VXI, we can use that same
program through an IEEE 488 bus
connected to a Slot-0 controller, on a
Grand Interconnect connection, or
directly on an embedded Slot-0 con-
troller. We don’t have to recompile
the applications program if we build
another system using a different
communications bus. Therefore, we
can build multiple hardware config-
urations without having to maintain
multiple software programs. We
should be able to reuse the code we
write today on any new VXIbus-to-
host-PC communications bus that
comes on the market.

In addition to getting drivers that
work with any communications bus,
we like that VXIplug&play instru-
ments come with DLL driver source
code. We also like the help files,
which document all the functions in
the plug&play library and include
sample applications that we can
paste into any application. I can’t
overstate the value of having both
the on-line help file and the sample
code when I’m developing an inter-
face for a new module type. T
FOOTNOTE
1. You can download VISA for Windows
from several Internet sites, including
ftp.natinst.com/support/vxipnp/drivers/
win32/1.2 and ftp://fcext3.external.hp.com/
dist/mxd/pc/binfiles/iol/index.html.

Jim Ware is the software product
manager for MTS-PowerTek. He has
been developing software for data-ac-
quisition and control systems for the
past 12 years. He holds a B.S. degree
in computer science from the Univer-
sity of Dayton and is a Microsoft Cer-
tified Professional.

VXIBUS-BASED TESTv

©

Programming Comparison
Programming a Unix-based system can be more complex than program-

ming a VXIplug&play-compliant system. When the engineers at my com-
pany build a Unix-based system, we use C-SCPI drivers and we can write function
calls using high-level commands. The following code line shows a C-SCPI code se-
quence for reading a value from an HP E1332 counter/timer module:

INST_QUERY(e1332device, ‘READ1?’, ’%lf’, &value);

A problem occurs when we need a module that requires register-based program-
ming. When that happens, we must program at the lower SICL level. The following
code segment shows the more complex syntax that performs the same read opera-
tion with register-based code:

while(!(iwpeek(&statuscontrol_register)&1));
while(!(iwpeek(&statuscontrol_register)&0x80));
iwpoke(&cmdresponse_register,command);
while(!(iwpeek(&statuscontrol_register)&1));
iwpoke(¶meter_register,parameter);

When developing a VXIplug&play-compliant system, we never have to program
at the SICL level. VXIplug&play-compliant instruments come with drivers that let us
program using high-level commands similar to the C-SCPI commands that we use
with Unix. We avoid the need to write register-based code, which greatly simplifies
our system development.—Jim Ware

m

Reprinted from TEST & MEASUREMENT WORLD June 1998
© 1998 by CAHNERS BUSINESS INFORMATION

